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Abstract:- 
Chemistry must not be an Experimental Science, its nature is engineering. For that reason, some methods look for 

working in a bureau better than in laboratory. Constructing models to get the conversion from Theory and Practice 

complete is one of the most logic projects everyone is very confident for doing. So, in the other side, Informatics and 

Engineering of Computers must open gateways to make possible the Management of the Molecular Design easily. But 

experts of computers know what kind of barriers exists, the strongest for Graph Theory is counting cases which assert 

something expected: those problems are defined and usually counted in Sharp-P class. This document try to approach 

technology to any required petition from that expects more from computers. 
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INTRODUCTION  

Architects construct buildings, but they always begin with a project designed in a bureau. Engineers are mastered by the 

Architect and generate a budget in hours, materials and workers. With a very realistic project, the result will generate a 

minimum margin of error from the final prize and the initial. In Informatics, for example, even not having a way to know 

at all if the final Design will be accepted or rejected in the middle of the project, the time of finalization is budgetable 

too. Time we need to investigate a concept to Design a project is able to get a budget in Engineering. So that property is 

interesting for Chemistry and the Molecular Design.  

 

Molecular Design works with different ways of comparing the molecules and their empirical properties. To get this, every 

molecule could be associated by a structure of datas which properties could be associated to the molecule again. One of 

the most horrible index to compute is the Hosoya Index, which requires the solving of a problem called match-sharp in 

Graph Theory.  

 

The problem of matching in a Graph G (V, E), with V verteces and E edges, is the problem of constructing a subset of E 

where every element has no vertex in common. So, the match-sharp problem of a Graph is knowing the number of sets 

that asserts that property. Even solving the match easily, match-sharp is considered very complicated u��der a function of 

time expressable in O (k·nk) where n is the number of edges of the graph. If the function of time were expressable in that 

way, we could say match-sharp is in P, so every transformation of structure of data in P which origin were match-sharp 

could be solved in P. And those things means that there exists a budgetable machine able to solve the problem in reality. 

In this document, an interesting tool will be showed to get closer results.  
 

1. Choicing operator  

I define choicing operator (1.1) as a Boolean function whose result is True iff one and only one of its members is true. 

When we have a product of choicing operator I will call it a choicing formula   

(1.2).  

 (A1 | A2 | … | An)  (1.1)  

 

The choicing formula (1.2) is divided in clausules. And clausules are divided in literals. Each literal is an atomic formula 

that can be negated.  

 

 (A1,1 | A1,2 | … | A1,n[1])·(A2,1 | A2,2 | … | A2,n[2])·...·(Am,1 | Am,2 | … | Am,n[m])  (1.2)  

 

This operator and the operator and are enough to represent every Boolean formula and the choicing formula is very 

well conditionated to manage the number of satisfied cases of the formula, as I will explain later.  

 

When choicing operator works with only two operands, then it is equivalent with XOR operator. And moreover, if we 

have a choicing formula like in  (1.2), we can transformate it in a choicing-3 formula like in  (1.3), considering the max 

number of operators must be 3 in every clausule.  

 

(A1,1 | A1,2 | A1,3)·(A2,1 | A2,2 | A2,3)·...·(Am,1 | Am,2 | Am,3)(1.3)That equivalence is very easy to obtain avoiding a 

combinatorial explosion using the fórmula  (1.4).  

 (A1 | A2 | … | An) = (A1 | A2 | X1)·(X1 | A3 | X2)·...·(Xn-2 | An-1 | An)  (1.4)  

   

1 2. Boolean algebra with choicing formulas  

If you want to represent every formula in Boolean algebra, it is needed simply a theorem. That theorem is described in 

(2.1) and there is where we can find a relationship between logic operators AND and XOR with choicing formulas up to 

three literals.  

 
Figure 1: Theorem (2.1)  

 

 (¬A | Z1 | A AND B)·(¬B | Z2 | A AND B)·(Z1 | Z2 | ¬ A XOR B) = 1  (2.1)  
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In article Relationship between P and NP [1], you can find how every formula can be easily converted as a product of 

clausules like  (A = B AND  C) where A, B and C are literals: atomic boolean formulas which can be negated.  

 

From that consideration, it is possible to construct great structures to define different kind of asserts, like in Figure 2.  

  
Figure 2: How to get a condicionated choicing formula  

 

3. Architecture of data of choicing. A possible polynomial implementation.  

The structure of data presented is a set of tables with a sort of triangular organization. In the way that every pair of 

clausules in the formula gets its own table. Matrix will contain rows and columns as literals in their clausules. So for 

every pair (I, J) of clausules en the formula with I < J, it is defined table (I, J) as the matrix in the structure which contains 

columns as literals in clausule I and rows as literals in clausule J. In this document table (I, J) = table (J, I) will be 

considered, even there could be reached good implementation where it could be otherwise. The matrix table (0, 1) it is 

called main table.  

 
Figure 3: The structure and three matrices for three clausules  

 

3.1 Initialitation  

Every table is constructed crossing the literals, so in the cell i, j the i-th literal in first clausule will be crossed with the j-

th literal in second clausule to apply this formula:  

a) if both literals are exactly the same, the result is forced 1 in i, j  

b) if both literals are exactly the opposite, the result is forced 0 in i, j  

c) In the rest of the cases, pass.  

 
Figure 4: Forced 0 in i, j  

 

So the algorithm forced 1 in i, j means that:  

1. The cell i, j in this table must be 1 in the initiation step.  

2. Every cell k, j and i, h where k ≠ i and h ≠ j, must be 0.  

 

And the algorithm forced 0 in i, j means that:  

1. The cell i, j in this table must be 0 from initiation step.  

2. Every cell k, j and i, h where k ≠ i and h ≠ j, must be 1.  

 

After executing those algorithms in every table, if any column or file in any table is full of 0's or in a step there was 

necesary to put 1 and 0 in the same cell, then the final result is 0 cases. And the algorithm ends with all matrices nulled.  
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3.2 Scrape Out and Polish  
In the next steps it is needed to operate with the matrices to make disapear incoherent cases. To get this we will reach 

three tables from three clausules and a matrix operation will be used. So, to update the table (I, J), every clausule K is 

taken to catch table (I, K) and table (J, K). After operating those matrices for every K, table (I, J) is updated, so it is 

needed to choose another pair (I, J). If we reach all tables in an order and, then, we repeat the same process in the inverted 

order, we will get the structure perfectly coherent with the formula.  

 

The first operation of reaching all tables in an order is called Scrape Out and the second process is called to Polish. After 

Scraping Out we will get the result of satisfiability of the formula: if the last matrix updated is nulled (no ones in cells) 

then the formula is not satisfiable; elsewhere it is satisfiable.  

 

The step of Polishing is decided to get every matrix (or interested) will be coherent with the formula: in the way if there 

is a one in a cell that will mean that there is almost one case satisfiable after putting literals pointed in their clausules as 

True.  

 

All the steps commented will be explained slower in the next paragraphs.  

Firstly, for every three tables defined by three clausules I, J, K with I < J < K their matrices are table (I, J), table (I, K) 

and table(J, K) which are able to represent the coordinates (i, j, k) as only one possible case where in clausule I is 

activated the i-th literal, in clausule J is activated the j-th literal and in clausule K is activated the k-th literal. And 

considering that to activate a negated literal is to make the variable False and to activate a positive literal is to make it 

True, it is set that:  

1) table(I, J) is called Top, and its cell is in column i, row j  

2) table(I, K) is called Base, and its cell is in column i, row k  

3) table(J, K) is called Edge, and its cell is in column j, row k  

 

Cells are denoted by upcase letters A, B, C..., with the information of the clausules of the original formula and the value 

in its matrix, which will be in this document always a Boolean.  

Now it is needed to define the impulse function δ (3.1).             

    

 (𝑥)   (3.1)  

 

From this point it is possible to understand the next definition, which is the most important to understand the reason 

everything works as is expected. It is defined a Joined Correspondence of cells A, B y C by the relationship R(A, B, C) 

under the showed condition (3.2).  

 

 R(A, B, C) iff  δ(A) + δ(B) + δ(C) ≠ 2  (3.2)  

 

That points to the theorem (3.3)  which ensures we can expect the condition above in every three coordinates.  

 

For every ordered clausules I1, I2, ..., In in a choicing formula, if we choose three  

clausules and from every one literal i, j, k respectively, then their three cells of                                                        (3.3) 

 Coordinates (i, j, k) satisfy a Joined Correspondence  

 

From (3.2) to update tables is possible, that is because this Principle is Transitive; that is: if the Principle happens in R(A, 

B, C) and  R(A, B, D) then is easy to demonstrate that R(B, C, D) will happen too. 

  

After the update of all the tables the Phase of Scrape Out will be ended, and in the last matrix every Joined 

Correspondences of the formula will be reached. So in that matrix we will study if formula is satisfiable.  

One operation of matrices to satisfy the (3.2) is denoted by δ (·*·) in (3.4).  Es decir, it will aply the AND operator for 

boolean matrices, coordinate to coordinate.  

For X, Y, Z matrices,  

X = δ(Y * Z)   iff   Xi,j = δ(Yi,j · Zi,j )                                                                             (3.4) 

Graphicaly, we can begin with clausules (I, J, K) to recognize matrices X, Y, Z in Top, Base and  Edge with the matrices 

table(I, J), table(I, K) y table(J, K).  
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Figure 5: Examples of the tables with a matrix operation 

 

Demonstration of the theorems is in the algebra beyond and in the real results in a coded class in Python. Considering the 

code of observations, it is easy to find an error if the code is wrong, so it must be considered with the fact this actually 

works.  

 

The next three formulas in (3.5), (3.6) and (3.7) are used for X, Y, Z matrices Top, Edge and Base to get the updated 

matrix.  

 Xn+1 = δ( Xn * (Zn
t·Yn) )  (3.5)  

Yn+1 = δ( Yn * (Zn·Xn) ) (3.6) 

Zn+1 = δ( Zn * (Yn ·Xnt) )  (3.7)  

 

So the number of steps after Scrape Out Phase is over o(n3) and under O(n3) where n is the number of clausules in the 

Choicing Formula. The workspace needed is under O(n2), so it is demonstrated those formulas finished in P.  

In Polish Phase it is possible to update only n tables to get all the cases, so complexity in that phase will be the same or 

lower.  

 

4. Conclusions  
This document was presented to show how the language of informatics is not very well developed to offer good codes 

for an interesting kind of problems. Those problems are where explicit sets are used to model the questions, in special 

the Theory of Graphs.  

This document was intended to get an approximation to the Hosoya Index, that is solving the sharp problem of matching 

a Graph, but at last it only could show all the cases represented one by one to get counted in slowly.  

It could be considered a very strong and a good step to continue investigating.  
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