NUTRITIONAL AND THERAPEUTIC POTENTIAL OF SPIRULINA: MINI REVIEW
Main Article Content
Abstract
Spirulina, blue green algae has high protein content (50-60%), antioxidant content, fatty acid content , and is currently utilized as nutritional supplement around the world. Composition of amino acid in Spirulina ranks among the best in the plant world. Spirulina, a blue green microalga found in alkaline water bodies, has antioxidant, anti-tumor, antiobesity, and anti-diabetic properties. Its high nutritional value and diverse applications make it a "wonder medicine." Spirulina contains high-quality protein, vitamins, amino acids, carbohydrates, fatty acids, and pigments, including beta-carotene. It is used as a nutraceutical food supplement and has a long history of use as a food source. Studies show Spirulina has promising biological activities like antitumor, antimicrobial, antiviral, anti-inflammatory, hypocholesterolemic, effects due to its natural constituents, including antioxidants and scavenging activities. Spirulina is used as a nutraceutical food supplement and has a long history of use as food service.
Article Details
References
Ahsan, M., Habib, B., Parvin, M., Huntington, T. C., & Hasan, M. R. (2008). A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals. FAO Fisheries and Aquaculture Circular (FAO), (1034).
Ali, S. K., & Saleh, A. M. (2012). Spirulina-an overview. International journal of Pharmacy and Pharmaceutical sciences, 4(3), 9-15.
Anvar, A. A., &Nowruzi, B. (2021). Bioactive properties of Spirulina: A review. Microb. Bioact, 4, 134-142.
Becker, E. W. (2017). Nutritional properties of microalgae: potentials and constraints. In Handbook of Microalgal Mass Culture (1986) (pp. 339-420). CRC press.
Capelli, B., & Cysewski, G. R. (2010). Potential health benefits of Spirulina microalgae* A review of the existing literature. Nutrafoods, 9(2), 19-26.
Dangeard, A. (2007). Spirulina (Arthrospira): production and quality assurance. In Spirulina in human nutrition and health (pp. 15-40). CRC press.
Diraman, H., Koru, E., &Dibeklioglu, H. (2009). Fatty acid profile of Spirulina platensis used as a food supplement.
Hayashi, O., Ishii, K., Kawamura, C., Hei, S. Y., Bao, N. Y., Hirahashi, T., & Katoh, T. (2004). Enhancement of mucosal immune functions by dietary Spirulina platensis in human and animals. Nutritional Sciences, 7(1), 31-34.
Kawanishi, Y., Tominaga, A., Okuyama, H., Fukuoka, S., Taguchi, T., Kusumoto, Y., ... & Shimizu, K. (2013). Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV‐M glioma cells through Toll‐like receptor 4. Microbiology and Immunology, 57(1), 63-73.
Kebede, E., & Ahlgren, G. (1996). Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis)(Cyanophyta) from Lake Chitu, Ethiopia. Hydrobiologia, 332, 99-109.
Kim, H. M., Lee, E. H., Cho, H. H., & Moon, Y. H. (1998). Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by Spirulina. Biochemical Pharmacology, 55(7), 1071-1076.
Mao, T. K., Water, J. V. D., & Gershwin, M. E. (2005). Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. Journal of Medicinal Food, 8(1), 27-30.
Miranda, M. S., Cintra, R. G., Barros, S. B. D. M., & Mancini-Filho, J. (1998). Antioxidant activity of the microalga Spirulina maxima. Brazilian Journal of Medical and biological research, 31, 1075-1079.
Mohan, A., Misra, N., Srivastav, D., Umapathy, D., & Kumar, S. (2014). Spirulina, the nature’s wonder: A review. Lipids, 5, 7-10.
Nege, A. S., Masithah, E. D., &Khotib, J. (2020). Trends in the uses of Spirulina microalga: a mini-review. SCIENTIFIC JOURNAL OF FISHERIES AND MARINE, 12(1).
Ohmori, M., &Ehira, S. (2014). Spirulina: an example of cyanobacteria as nutraceuticals. Cyanobacteria: an economic perspective, 103-118.
Parages, M. L., Rico, R. M., Abdala-Díaz, R. T., Chabrillón, M., Sotiroudis, T. G., & Jiménez, C. (2012). Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-α in RAW macrophages. Journal of applied phycology, 24, 1537-1546.
Remirez, D., González, R., Merino, N., Rodriguez, S., & Ancheta, O. (2002). Inhibitory effects of Spirulina in zymosan-induced arthritis in mice. Mediators of Inflammation, 11, 75-79.
Richmond, A., & Grobbelaar, J. U. (1986). Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass, 10(4), 253-264.
Sahu, A., Pattanayak, A., Sahoo, R. K., Gaur, M., Sahoo, K., & Subudhi, E. (2019). Arsenite S-Adenosylmethionine-Producing Spirulina platensis: A New Trump Card on the Face of Global Arsenic Poisoning. The Role of Microalgae in Wastewater Treatment, 29-55.
Schwartz, J., &Shklar, G. (1987). Regression of experimental hamster cancer by beta carotene and algae extracts. Journal of Oral and Maxillofacial Surgery, 45(6), 510-515.
Sharma, G., Kumar, M., Ali, M. I., & Jasuja, N. D. (2014). Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. Microbial and Biochemical Technology, 6(4), 202-206.
Tejero Pérez, A., Kapravelou, G., PorresFoulquie, J. M., López Jurado Romero de la Cruz, M., &MartínezMartínez, R. (2023). Potential benefits of microalgae intake against metabolic diseases: beyond Spirulina—a systematic review of animal studies. Nutrition Reviews, nuad098.
Tobón-Velasco, J. C., Palafox-Sánchez, V., Mendieta, L., García, E., Santamaría, A., Chamorro-Cevallos, G., & Limón, I. D. (2013). Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum. Journal of Neural Transmission, 120, 1179-1189.
Vo, T. S., Ngo, D. H., & Kim, S. K. (2015). Nutritional and pharmaceutical properties of microalgal Spirulina. In Handbook of marine microalgae (pp. 299-308). Academic Press.
Yang, H. N., Lee, E. H., & Kim, H. M. (1997). Spirulina platensis inhibits anaphylactic reaction. Life Sciences, 61(13), 1237-1244.